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How do I Solve this Equation? Look at the Symmetries! – 
The Idea behind Galois Theory 
Timo Leuders 
 
Introduction 
There are some questions that accompany the development of mathematics through 
cultures and ages. One of these questions is how to find an unknown quantity x of 
which one knows some relations such as – in today’s algebraic notation: 

   x2 = x +5    

Finding solutions to such quadratic equations are essentially known since Babylonian 
times and are core content school mathematics: 

   x
2 − x −5 = 0 ⇒ x = 1

2 + 1
2 21 ∨ x = 1

2 − 1
2 21   

But how about   x5 = x +5 , which looks only slightly different? Are there also 
straightforward ways to calculate the solutions? Do the solutions also look symmetric 
in a similar way? 

The quest for solving equations inspired mathematicians to invent (some would 
rather say: to discover) new concepts such as negative, real or complex numbers. But, 
solving the polynomial equation in the second example posed severe problems for 
five hundred years. Why is it so difficult? Let us cheat for a moment and ask a 
Computer Algebra System (CAS) - which of course uses what is known about solving 
equations.  

Solve[x4 – 5x2 + 4 == 0, x]  
L = {-2, -1, 1, 2} 

 Solve[x4 – 5x2 + 3 == 0, x]   
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 Solve[x4 – 5x + 1 == 0, x] 
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 Finally: For Solve[x5 + x + 5 == 0, x] the CAS gives up and yields no solution.  

What is going on here? Why does a seemingly small change in the equation lead to 
such tremendous problems in presenting the solutions? What is the structure of the 
equation that ultimately decides on the existence or the complexity of a solution? The 
answer to these questions is: It is all about the symmetry of the equation! But what 
exactly is the symmetry of an equation? 

The attempts in history to find a general solution procedure for polynomial equations 
finally lead to a transformation of classical algebra (as the art of solving equations) 
into modern algebra (as the analysis of structure and symmetry). A culmination point 
in this development was the work of Évariste Galois (1811-1832). This paper tries to 
give a less technical account of Galois’ ideas that changed algebra by showing 
examples that highlight what it means to „look at structure and symmetry“ when 
trying to solve equations. 

What is the symmetry of an equation? 
When looking at the solutions of a quadratic equation 

   x
2 + 2x + 3= 0, x1,2 = −1± 1− 3 = −1± i 2  

one detects a certain symmetry with respect to the quantity   i 2 . Mark that this 
quantity is not a rational number anymore, although the coefficients of the equation 
are.   i 2  needs to be created in addition to the purely rational numbers for being able 
to write down a solution. (In modern words this is called a field extension    !(i 2) ).   

The symmetry of the solutions can also be written without explicitly using these extra 
quantities by just stating the following two rational relations (i.e. equations using 
only rational numbers and rational operations): 

   x1 + x2 = −2, x1 ⋅ x2 = 3 . 
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These relations connect the solutions in a symmetric way: Exchanging the two 
solutions x1 and x2 (for which we will use the notation 1↔2 or shorter and more 
common mathematics: (12)) preserves the relations. This reflection symmetry is 
represented by the following figure: 

 

 

Considering another equation leads to a different situation: 

   x
2 + 4x −5 = 0, x1,2 = −2 ± 4− (−5) = −2 ± 3  

The solutions need no extra quantities and allow for additional rational relations 
between the solutions, for example  

   5x1 + x2 = 0 ,   x1 −1= 0 ,   x2 +5 = 0 . 

 
These relations lead to a situation of less symmetry between the solutions (one may 
call this a “partial breakdown of symmetry”): The relations do not hold when 
exchanging x1 and x2. The following figure suffers from the same breakdown. The two 
different circles (one single, one double) indicate that the two solutions are not 
exchangeable anymore. 
 
 
 
All this may appear rather trivial and it is still hard to see how this perspective of 
symmetry can be useful for understanding the solution principles of any polynomial 
equation. This will only become evident when we switch to a more nontrivial case.  
For this purpose we look at a special type of equations of fourth degree, the so-called 
bi-quadratics (on the one hand they are simple enough to be solved by means of 
school mathematics, even without complex numbers, on the other hand they will 
reveal a complex behaviour with respect to symmetry).  
 
First, consider the general biquadratic equation. 

   x4 + ax2 + b =  0  
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By expanding   (x − x1)(x − x2 )(x − x3)(x − x4 ) =  0 one can see, that the four solutions 

necessarily fulfill the following relations: 
 

  x1x2x3x4 = b   

  x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 = 0  

  x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 = a  

  x1 + x2 + x3 + x4 = 0  

 
These four equations are symmetric with respect to any permutation of the four 
solutions. This symmetry is identical with the symmetry group of the tetrahedron, 
which comprises all rotations and reflections. (For the following analysis it is useful 
to turn the tetrahedron into the somewhat unusual positition so that one is looking 
onto an edge). 
 
 
 
 
But the biquadratic equation has additional structure as the solutions are paired in 
two pairs. For example consider  the following concrete equation where x1 is paired 
with x2, and also x3 with x4. 
 

   x4 –  6x2 + 2 =  0  ,   x1,2,3,4 = ± 3± 7  

   x1 + x2 = 0 ,   x3 + x4 = 0  

 

These relations are preserved under permutations which „respect“ the pairs, such as 
1↔2 or 3↔4 or (1↔2 & 3↔4) but also (1↔3 & 2↔4), (1↔4 & 2↔3), (1→3→2→4→1) 
or (1→4→2→3→1). In mathematical shorthand this can be written as (12),(34), 
(12)(34),(13)(24), (14)(23), (1324) and (1423). The figure beside the equation 
represents the same situation: The pairing of opposing vertices reduces the symmetry 
of the former tetrahedron by allowing only those rotations and reflections which 
conserve the pairings. 
 
By multiplying solutions  
 

   x1x3 = 3+ 7 3− 7 = 9− 7 = 2 	or	  x1x2 = − 3+ 7 3+ 7 = 3+ 7  
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it is possible to find even further relations: 
 

   x1x3 − x2x4 = 0 	 ,	  x1x4 − x2x3 = 0 	 		or		   x1x2 + x3x4 − 6 = 0  

 
The group of permutations that preserves all possible rational relations between the 
solutions of an equation is called the Galois group of the equation. As to this point we 
can be sure that the Galois group G of the equation is contained in the dihedral group 
D4 (actually, without proof, it is the dihedral group) 

 G	⊆	{	(1),	(12),	(34),	(12)(34),	(13)(24),	(14)(23),	(1324),	(1423)	}	=	D4 

The symmetry breaking effect of the relations is already depicted in the tetrahedron 
above, in which the relations are introduced as a symmetry break by tagging two 
edges. A rotation around an axis through one triangle, such as (123) is not possible 
anymore. 
 
Let’s look at another biquadratic equation. This time the “nested roots” vanish due to 
the special values of the coefficients: 

   x
4 –  5x2 + 6 = (x2 − 2)(x2 − 3) = 0 , 

  
x1,2,3,4 = ± 5

2 ± 1
4 = ± 5

2 ± 1
2 .		

Some of the rational relations that express the special structure, are: 

   x1 + x2 = 0 ,   x3 + x4 = 0  

   x1,2
2 − 3= 0    x3,4

2 − 2 = 0  

This time the symmetry is broken even further: The two pairs cannot be exchanged 
with each other anymore, since they fulfill mutually exclusive rational relations. 
Therefore we can be sure that the Galois group G of the equation is contained in the 
so-called „Klein Four-Group“ V4  

 G	⊆	{	(1),	(12),	(34),	(12)(34)	}	=	V4 

(Yes, it was actually named after Felix Klein, who first dubbed it “Vierergruppe” in a 
famous paper cited below). The figure again shows the same symmetry breakdown: 
the vertex pair connected by the thick line can not be exchanged with the other pair 
anymore. 
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Going a step further it is easy to imagine how the symmetry can be broken further: 

   x
4 –  4x2 + 3 =  0 = (x −1)(x +1)(x2 − 3) ,   x1,2,3,4 = ± 2 ± 1 = ± 2 ±1    

   x1,2
2 − 3= 0    x3 +1= 0   x4 −1= 0  

The symmetry is reduced to G	⊆	{	(1),	(12)}	=	  Z2 .	Analogously,	in	the	figure	only	one	

pair	exchange	leaves	the	figure	invariant.	 		

Two less obvious and more interesting situations can occur. The following equation 

   x4 –  4x2 +1 =  0  ,   x1,2,3,4 = ± 2 ± 3 .		

contains some special numbers that allow for some relations not yet encountered: 
		

  x1x3 = 2+ 3 2− 3 = 4− 3 = 1 		

	   x1x3 −1= 0 ,	  x1x4 +1= 0 ,	   x2x3 +1= 0 ,	  x2x4 −1= 0 	

These relations break down the dihedral symmetry of a general biquadratic equation 
to another Galois group isomorphic but not identical to the above 

	 G	⊆	{	(1),	(12)(34),	(13)(24),	(14)(23)	}	 		V4	

The figure beside the equation shows the same symmetry. 
Finally the constellation of parameters in 

   x4 –  4x2 + 2 =  0  ,   x1,2,3,4 = ± 2 ± 2 .	 

allows for a more intricate construction of rational relation between solutions:	

   x1
2 − x1x3 = 2+ 2 2+ 2 − 2+ 2 2− 2 = (2+ 2)− 4− 2 = 2 	

The two roots that annihilate each other in the last step stem from different nesting 
levels. The ensuing relations  

   x1
2 + x1x3 − 2 = 0 ,	  x3

2 − x3x2 − 2 = 0 ,  x2
2 − x2x4 − 2 = 0

 
or	  x4

2 − x4x1 − 2 = 0 		

have a cyclic structure and reduce the symmetry to a cyclic group:	

	 G	⊆	{	(1),	(12)(34),	(1324),	(1423)	}	=	  !4 	

≅
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To create an analogous symmetry in the tetrahedron one can reduce the symmetry by 
drawing arrows and thus allowing only for cyclic rotations among the vertices. 

 

What does symmetry tell about the solution of an 
equation? 
You may have wondered how the analysis of the structure and symmetry of the 
solutions could contribute to the original problem, the solution of the equation. The 
situation is similar to the famous „principle of insight“ from gestalt psychology: When 
finding the right way of restructuring a problem (finding a good gestalt), one often 
has already found the main step to its solution. This is also true here, although there 
are still some more details to be understood. 
 

Large Symmetry  ↔   Few Relations  ↔   Complex Solutions   

 
The examples have shown the following qualitative behaviour: When the equation 
has no „special features“, there is perfect symmetry between the solutions. Only total 
symmetric relations such as   x1 + x2 + x3 + x4 = 0  or   x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 = 0

hold for the solutions, meaning that the Galois group would contain all permutations. 
The general equation of degree 4  
(  x4 + ax3 + bx2 + cx + d = 0 ) bears maximal symmetry which shows up in the Galois 
group being the complete symmetric group S4 of all permutations. Whenever there 
are features in an equation that lead to unusual relations between the solutions (such 
as   x1 + x2 = 0  in the biquadratic equation) certain symmetries are broken (such as (13) 
in the example). They disappear from the Galois group which reduces to a subgroup 
of S4 (such as D4 in the example). Furthermore: A solution formula for an equation 
(provided there is one) is less complex with respect to the use of nested roots, the 
smaller the symmetry is. This indicates that the size of the symmetry group somehow 
measures the complexity of a potential solution formula. 

 
Solving an equation ↔  Adding radicals ↔  Reducing the Galois group 

 
Fortunately this qualitative behaviour works in a mathematically very definite 
manner, giving rise to a complete understanding of the process of solving an 
equation. Giving a solution of an equation can be seen as a stepwise construction of 
the solutions by building more and more complex expressions with roots („radicals“). 
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This process is called „adjoining“ and amounts to extending the rational numbers    

with roots of rational numbers, and then roots of roots and so on. This is clearly 
illustrated by “solving“ the equation   x4 –  6x2 + 2 =  0  from above and stepwise build 
the solutions   x1,2,3,4 = ± 3± 7

 

 

Numbers known in 

this step  

Some relations between 

the roots 

Symmetry group (=all permutations 

that preserve all relations) 

   -	only	rational	

numbers 

  x1 + x2 = 0 ,   x3 + x4 = 0

  x1x3 − x2x4 = 0 	 		

  x1x2 + x3x4 − 6 = 0  

and many more 

D4	=	{	(1),	(12),	(34),	(12)(34),	(13)(24),	

(14)(23),	(1324),	(1423)	}		-	this	is	the	

Galois	group	of	the	equation 

 
In the next step we adjoin as a first new number  7  and also allow rational 
combinations. This extends the field    to   ( 7 )     ={a + b 7 | a,b∈}. Regarding this 

number field as „known numbers“, new relations between the solutions appear. 
These relations on the other hand break symmetries and thus reduce the symmetry 
group. 
 

  ( 7 )  

   ={a + b 7 | a,b∈} 
  x1x2 − 3− 7 = 0  

as an additional relation 

V4	=	{	(1),	(12),	(34),	(12)(34)	}		-	this	is	a	

subgroup	of	the	Galois	group	

 
This process can be continued. When adjoining 3+ 7 one solution is already 

explicitly reached. The symmetry with respect to this solution is completely broken. 
 

  ( 7 )( 3+ 7 )    x1 − 3+ 7 = 0  

as an additional relation 
  2 	=	{	(1),	(34),	}		-	this	is	a	further	

subgroup		

 
In a final step, by adjoining  3− 7 the symmetry is completely broken, a total 

reduction is reached and every solution is expressed by radical expressions. 
 

  ( 7 )( 3+ 7 )( 3− 7 )

 
  x3 − 3− 7 = 0  

as an additional relation 
E	=	{	(1)	}		-	total	reduction	is	reached		
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This example gives a clue about the connection between the central concepts linked 
with the structure of an equation. Actually all these four processes are more or less 
the same: 
 
1) „constructing solutions of an equation“:  7 → 3+ 7 → 3− 7  

2) „extending the field of numbers“: 

  →( 7 )→( 7 )( 3+ 7 )→( 7 )( 3+ 7 )( 3− 7 )  

3) „reducing the symmetry between the solutions by finding new relations“  
4) „finding subgroups of the Galois group“:    D4 V4 2  E  

 
Mark the parallelism between extending number fields and reducing the Galois 
groups:  

	 	    D4 V4 2  E
	

  ⊂( 7 )⊂( 7 )( 3+ 7 )⊂( 7 )( 3+ 7 )( 3− 7 ) 	

This can be taken a step further and leads to a one-to-one relation between all 
subfields (in this example of   ( 7 )( 3+ 7 )( 3− 7 ) ) and all subgroups of the Galois 

Group (in this example D4) – the famous „fundamental theorem of Galois theory“. 

 
Can Galois theory provide formulas for the solutions? 
This question should best be answered by Galois himself (although his answer rather 
sounds like the famous answers in Radio Eriwan jokes: „principally yes, but...“): „If 
you now give me an algebraic equation chosen at will and you want to know 
whether it is solvable by radicals or not, I would only show the means to answer the 
question, not wanting to charge myself or anyone else to do this. In one word: the 
calculations are impractical“ (Galois, 1832, p.39). You may understand this if you 
consider that Galois’ concrete procedure would require an equation of fifth degree to 
construct and factorize a polynomial of degree 120. This puzzled many of Galois’ 
contemporaries who had hoped for a feasible algorithm. They simply did not follow 
Galois on his radically new perspective: Galois stopped looking for a solution 
algorithm for all equations of fifth or higher degree. Instead he rephrased the 
question: What is the essential structure of an equation that indicates its solution? He 
understood that it is not the coefficients but the symmetry of solutions in terms of 
rational relations. Of course he used many ideas from Lagrange and Ruffini, but 
essentially it was him who took the giant leap from classical algebra („how do I solve 
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an equation“) to modern algebra („what is the structure of the equation in terms of 
symmetry“). 
 
Once Galois had established the abstract theory of equation structures he could use it 
for a higher purpose: His theory could answer the question why the solution by 
radicals was difficult in one case and easy in another one. And it could even explain 
why it was sometimes even more than difficult – it was impossible!  
 

This is what we will finally undertake: We will look at the solution process from the 
point of view of symmetry (i.e. from the reduction of the Galois group). In the 
example above the stepwise reduction from the Galois group to the trivial group  

   D4 V4 2  E 	every step has a „remarkable property“ (as Galois himself called it): 
Every smaller group is a special kind of subgroup of the larger group (a „normal 
subgroup“) and the quotient of the group sizes is always a prime number (in this case 
8:4:2:1, so always p=2). Galois realized that this property is necessary and sufficient 
for the equation to be solved by radicals. For all equations of degree 4 or lower any 
group can be reduced by obeying the „remarkable property“. Among the equations of 
degree 5 (or higher) most of the examples have no special feature and therefore 
possess a large Galois group (a large symmetry, a high complexity, few relations 
between the solutions). The equation   x5 − 4x + 2 = 0  for example has the Galois group 
S5 (i.e. all permutations of 5 elements) – no relation between solutions reduces the 
symmetry - and so one should hope for a reduction like this 

    S5  ... ... D5 5  E 	

which, with respect to the group sizes, would amount to 120 : ... : ...  :  10 : 5 : 1. But 
one can show by inspecting the subgroups of S5 that there is no such sequence as 
would be necessary. Therefore there can be no general solution by radicals for all 
equations which have a certain complexity, and in particular a general formula for 
equations of degree 5 or higher does not exist. This was already known and proven 
some years before Galois (by Ruffini and Abel), but within an analysis like the one 
from Galois the answer on solvability is a mere corollary. 
 
Further reading 
The explanations of the core ideas behind Galois theory presented here, give a 
glimpse on the meaning and the beauty of a key theory for modern mathematics. 
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Many details and many close connections to other aspects (construction with 
compass and ruler, cyclotomic numbers, invention of complex numbers, minimal 
polynomials and so on) have been omitted. Fortunately there are many textbooks that 
not only deliver modern Galois theory in an abstract way (and thereby barring the 
reader from understanding the key idea) but which try to facilitate an acquaintance 
with the many aspects of Galois theory. Depending on the intention of the reader 
different books are recommended: 

The original: Galois, É. (1846). Écrits et Memoires Mathematiques d'Évariste Galois, 
R. Bourgne  and J.MP. Azra, Editors, Gauthier-Villars, Paris, 1962. Also: 
Oeuvres Mathematiques d'Évariste Galois, Gauthier-Villars, Paris, 1897, and J. 
Math. Pureset Appl. (1) 11, 381-444.  

An extensive analysis of the original in a classical approach and with a complete 
English translation: Edwards, H. M. (1984). Galois theory. New York: Springer-
Verlag. See also: Edwards, H. M. (2011). Galois’s Version of Galois Theory - Talk 
Presented at the Galois Bicentennial. Institut Henri Poincaré, Paris, October 24, 
2011. 

A popular description, accessible without formal mathematics: Stewart, I. (2007). 
Why beauty is truth: a history of symmetry. New York: Basic Books. 

An elementary approach with an emphasis also on the historical predecessors: 
Bewersdorff, J. (2006). Galois theory for beginners: a historical perspective. 
Providence: American Mathematical Society. 

A historical geometric approach – not elementary: Klein, F. (1956). Lectures on the 
Icosahedron and the Solution of Equations of the Fifth Degree. New York: 
Dover. Republished with commentaries by P. Slodowy, Basel: Birkhäuser, 1993. 
See also: Nash, O. (2014). On Klein’s icosahedral solution of the quintic. 
Expositiones Mathematicae, 32(2), 99-120. See also: 
http://arxiv.org/abs/1308.0955  

A textbook on algebra with close connections to school mathematics – unfortunately 
only in German (yet): Leuders, T. (2016). Erlebnis Algebra – zum aktiven 
Entdecken und selbstständigen Erarbeiten. Heidelberg: Springer. 

A discussion why and how future teachers might approach Galois theory during 
university: Leuders, T. (2016). Subject Matter Analysis with a Perspective on 
Teacher Education – The Case of Galois Theory as a Theory of Symmetry. 
Journal für Mathematikdidaktik 
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