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Introduction

For centuries people learned mathematics by studying Euclid’s Elements. A focus of
the Elements is on the construction of geometric figures using a straightedge (a ruler
with no markings) and a compass. The Elements gives constructions of regular poly-
gons with n = 3, 4, 5, 15 sides (and polygons with 2kn sides), but not until two thou-
sand years later was the construction of another regular polygon discovered. In 1796
Carl Friedrich Gauss awoke one morning just before his 19th birthday, and by “con-
centrated thought” discovered that a regular heptadecagon (a regular polygon with 17
sides) is constructible.

In Euclidean geometry constructions are given as step-by-step instructions: starting
with given points and lines, lines and circles are constructed and their points of in-
tersection are used to construct new lines and circles. Gauss’s proof is revolutionary
because he did not give any geometric constructions whatsoever. Instead, he defined
constructibility as a property of expressions using integers and arithmetical operators,
and then using algebra alone proved that the length of a side of a heptadecagon is
given by an expression with the property required for constructibility. The algebra
required is accessible with a knowledge of secondary-school mathematics.

Constructibility

The first proposition in the Elements claims that an equilateral triangle can be con-
structed. (Henceforth, “construct” will be used as an abbreviation for “construct by
straightedge and compass.”) Given a line segment AB, draw two circles whose centers
are A and B, and whose radii are the length of AB. C, the intersection of the circles,
defines the third vertex of the triangle (Figure 1).

A B

C

Figure 1: Construction of an equilateral triangle

Definition: A real number x is constructible if and only if starting with a line segment
defined to be of length 1 it is possible to construct a line segment of length x.

Theorem: x is constructible if and only if it is the result of evaluating an expression
that uses only the integer 1 and the operations {+,−,×, /,

√
}.

Examples: Figure 2 (left) shows how to construct a − b = 3 and a + b = 7 given a = 5
and b = 2 by constructing a circle of radius 2 whose center is an endpoint of a. Figure 2
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(right) shows how to construct
√

a =
√

3 given 1 and a = 3 by constructing similar
triangles within a semicircle.
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Figure 2: Construction of a ± b,
√

a

These constructions can be generalized to prove that an expression using {+,−,
√
}

can be constructed. Expressions using {×, /} can be constructed using similar trian-
gles (Figure 3).

b
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Figure 3: Construction of ab, a/b

To prove the forward direction of the theorem, note that lines are defined by linear
equations and circles by quadratic equations. By solving pairs of equations, it can be
shown that the points of intersection of lines and circles are given by expressions using
{+,−,×, /,

√
}, as are the lengths of line segments which are the distances between

two points.

Impossible constructions

The Greeks were unable to trisect an angle (divide a given angle into three equal parts),
square a circle (construct a square with the same area as a given circle) and double a
cube (construct a cube with twice the volume of a given cube). During the nineteenth
century it was proved that these constructions are impossible.

Of equal interest was the construction of regular polygons. The Greeks were unable
to construct regular polygons with n = 7, 9, 11, 13, 14, 17, 18, . . . sides, but not until
the work of Gauss was any progress made to determine if the construction of these
polygons is possible or not.

The mathematics of constructibility

A regular polygon can be inscribed in a unit circle; all of its sides are equal and as are
all of its central angles (Figure 4). Clearly, if we can construct a central angle we can
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construct the side of the polygon that subtends it. Construction has been defined only
for line segments, so we first show that given a line segment of length cos θ, where θ

is the central angle of a regular polygon, the polygon is constructible.

θ
θ

θ

θθ
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a

Figure 4: A regular polygon (pentagon) inscribed in a circle

Construct a unit circle centered at O and let A be an arbitrary point on the circle.
Construct the radius OA and construct the (given) line segment OB of length cos θ on
OA. Construct the perpendicular at B (Figure 5). By the definition of cosine, C, the
intersection of the perpendicular with the circle, defines the central angle θ and thus
AC is a side of the polygon.

O
θ

A

1

C

Bcos θ

Figure 5: The side of a regular polygon and its central angle

Let us look at some examples:

• The central angle of an equilateral triangle is 120◦ and cos 120◦ = −1/2 is con-
structible, so the equilateral triangle is constructible.

• The central angle of a regular pentagon is 72◦ and it is not too hard to show that
cos 72◦ = (

√
5 − 1)/4, so a regular pentagon is constructible.

• The central angle of regular pentadecagon (a regular polygon with 15 sides) is
360◦/15 = 24◦ = (120◦ − 72◦)/2. This can be constructed from an equilateral
triangle (dashed blue) and regular pentagon (dashed red) with a common vertex
and a common radius of a central angle (Figure 6). ̸ AOB (red) is the central
angle of the pentagon, ̸ AOC (blue) is the central angle of the triangle and their
difference is ̸ BOC = 48◦, which can be bisected to obtain 24◦.
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Figure 6: Central angles of an equilateral triangle and a pentagon

Alternatively, trigonometric identities can be used to define cos 24◦ from lengths
previously shown to be constructible:

cos 48◦ = cos(120◦ − 72◦) = cos 120◦ cos 72◦ + sin 120◦ sin 72◦

cos 24◦ = cos
48◦

2
=

√
1 + cos 48◦

2

Gauss’s goal was to show that cos(360◦/17) is constructible.

Mathematical prerequisites

With one exception we will only use mathematics usually taught in secondary school:

• Exponents: xn · xm = xn+m.

• Integer division: given n, d, there exist q, 0 ≤ r < d such that n = qd + r.

• Quadratic polynomials: the roots of x2 + bx + c are −b±
√

b2−4c
2 .

• Trigonometric identities for cos(α ± β), sin(α ± β).

• Complex numbers: points on the unit circle can be represented as cos θ + i sin θ.
de Moivre’s formula: (cos θ + i sin θ)n = cos nθ + i sin nθ.

The exception is the Fundamental Theorem of Algebra, which states that an n degree
polynomial with complex coefficients has n complex roots. Actually, we only need
one simple case of the theorem: the polynomial xn − 1 has (at least) one root r ̸= 1 or,
even more narrowly, that x17 − 1 has (at least) one root r ̸= 1

The roots of unity

The roots of xn − 1 are called the n-th roots of unity. If r is an n-th root of unity
then (r2)n = (rn)2 = 12 = 1 so r2 is also an n-th root of unity. It follows that
1, r, r2, . . . , rn−2, rn−1 are all n-th roots of unity. What we don’t know is if they are
distinct and thus all the n-th roots of unity.
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• The roots of the polynomial x4 − 1 are {1,−1, i,−i}. By computation we find
that {i0, i1, i2, i3} = {1, i,−1,−i}, but {(−1)0, (−1)1, (−1)2, (−1)3} = {1,−1},
so the powers of −1 are not distinct.

• The roots of the polynomial x3 − 1 are:

x0 = 1, x1 =
−1 + i

√
3

2
, x2

−1 − i
√

3
2

.

By computation we find that {x0
1, x1

1, x2
1} = {x0, x1, x2} and similarly {x0

2, x1
2, x2

2} =

{x0, x2, x1}, so the powers of the two roots ( ̸= 1) are distinct.

Theorem: If n is a prime number and r ̸= 1 is an n-the root of unity then 1, r, . . . , rn−1

are distinct.

Proof: If ri = rj for some 0 ≤ i < j ≤ n − 1 then rj/ri = rj−i = 1. Let m be the smallest
positive integer such that rm = 1. By the division formula:

1 = rn = rml+k = (rm)l · rk = 1l · rk = rk ,

where 0 ≤ k < m. But 0 < k < m and rk = 1 contradict the assumption that m was the
smallest such positive number, so k = 0 and n = ml is not prime.

From roots to coefficients of polynomials

Suppose that we know the values of r1, r2, two roots of a quadratic polynomial x2 +

bx + c. What are the coefficients? By computation:

(x − r1)(x − r2) = x2 − (r1 + r2)x + r1r2 = x2 + bx + c ,

so:
b = −(r1 + r2), c = r1r2 . (1)

Similarly the coefficients of any polynomial can be computed if the roots are known.
Given that the roots of x17 − 1 are {1, r, r2, · · · , r15, r16}, we can find the coefficients
of the polynomial by multiplying (x − 1)(x − r1)(x − r2) · · · (x − r15)(x − r16). The
coefficient of x16 is:

−(1 + r1 + r2 + · · ·+ r15 + r16) ,

which is zero in x17 − 1 so:

r1 + r2 + · · ·+ r15 + r16 = −1 . (2)

Quadratic polynomials from the 17-th roots of unity

Gauss’s insight was that we need not work with the roots in their natural order r, · · · , r16,
but that other powers of roots can generate all the roots.

Is there a number g such that the sequence g0, g1, g2, . . . , g16 (all modulo 17) gives all
the numbers in the sequence 1, 2, . . . , 16 in a different order? Well, not all numbers
work; for g = 4, we get only four distinct numbers:

1, 4, 16, 64 = (17 · 3 + 13) = 13, 256 = (17 · 15) + 1 = 1 .
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However, for g = 3, the sequence g0, g1, g2, . . . , g16 gives of all the numbers in the
sequence 1, 2, . . . , 16 in a different order:

1, 3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6 .

The reason is that 3 is relatively prime to 16 (and is, in fact, the smallest such integer).

Using g0, g1, g2, . . . , g16 as exponents we obtain a reordering of the powers of the root
r:

r1, r3, r9, r10, r13, r5, r15, r11, r16, r14, r8, r7, r4, r12, r2, r6 .

Write the sequence of roots as follows in order to distinguish roots in the odd positions
from those in the even positions:

r1 r9 r13 r15 r16 r8 r4 r2

r3 r10 r5 r11 r14 r7 r12 r6 .

Let a0, a1 be the sums of the roots in the odd and even positions, respectively:

a0 = r + r9 + r13 + r15 + r16 + r8 + r4 + r2

a1 = r3 + r10 + r5 + r11 + r14 + r7 + r12 + r6 .

Compute a0 + a1 using Equation 2:

a0 + a1 = r + r2 + · · ·+ r16 = −1 .

Now compute a0a1 and simplify. It takes quite a lot of work [1, Section 16.4], but the
result is the sum of four copies of Equation 2 so:

a0a1 = −4 .

Given that a0, a1 are roots, by Equation 1 they are the roots of the polynomial:

y2 + y − 4 = 0 ,

and their values are:

a0, a1 =
−1 ±

√
17

2
.

Let b0, b1, b2, b3 be the sums of every fourth root starting from r1, r3, r9, r10, respectively:

b0 = r1 + r13 + r16 + r4

b1 = r3 + r5 + r14 + r12

b2 = r9 + r15 + r8 + r2

b3 = r10 + r11 + r7 + r6 .

Check that b0 + b2 = a0, b1 + b3 = a1 and compute the corresponding products which
are b0b2 = b1b3 = −1. Therefore, b0, b2 are the solutions of y2 − a0y − 1 = 0, and b1, b3
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are the solutions of y2 − a1y − 1 = 0. Using the values previously computed for a0, a1

we can compute the roots b0, b1. The results are:

b0, b1 =
(−1 ±

√
17) +

√
34 ∓ 2

√
17

4
.

(For b0 take plus and then minus and for b1 take minus and then plus.)

Finally, let c0, c4 be the sums of every eighth root starting with r1, r13, respectively:

c0 = r1 + r16

c4 = r13 + r4

c0 + c4 = = b0

c0c4 = b1 .

c0, c4 are the roots of y2 − b0y + b1 = 0:

c0, c4 =
b0 ±

√
(−b0)2 − 4b1

2
,

which after a lot of messy algebra reduces to:

c0 = −1
8
+

1
8

√
17 +

1
8

√
34 − 2

√
17 +

1
8

√
68 + 12

√
17 + 2(−1 +

√
17)

√
34 − 2

√
17 − 16

√
34 + 2

√
17 .

What do these solutions of quadratic equations whose coefficients are derived from
the roots of x17 − 1 have to do with the heptadecagon?

Connecting the quadratic expression to the heptadecagon

Actually, we know an expression for a root of x17 − 1, although the expression does
not show that the value is constructible:

r = cos
2π

17
+ i sin

2π

17
.

This follows from de Moivre’s formula:

r17 =

(
cos

2π

17
+ i sin

2π

17

)17

= cos 2π + i sin 2π = 1 .

We found a constructible expression for r1 + r16 so let’s see where this leads us:

r1 + r16 =

(
cos

2π

17
+ sin

2π

17

)
+

(
cos

16 · 2π

17
+ sin

16 · 2π

17

)
= 2 cos

2π

17
,

since:

cos
16 · 2π

17
= cos

(
34π

17
− 2π

17

)
= cos 2π cos

2π

17
− sin 2π sin

2π

17
= cos

2π

17
,
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and similarly sin(16 · 2π/17) = − sin(2π/17). It follows that:

c0

2
=

r1 + r16

2
= cos

2π

17
.

Therefore, the cosine of the central angle of a heptadecagon is the result of evaluating
an expression that uses only the integer 1 and the operations {+,−,×, /,

√
}, so a

regular heptadecagon is constructible using a straightedge and compass!

The formula that usually appears in the literature is:

cos
2π

17
= − 1

16
+

1
16

√
17 +

1
16

√
34 − 2

√
17

+
1
8

√
17 + 3

√
17 −

√
34 − 2

√
17 − 2

√
34 + 2

√
17 .

We leave it to the reader to derive this formula from the one we derived above.

Gauss-Wantzel Theorem

Theorem: A regular polygon with n sides is constructible if and only if n is the product
of a power of 2 and zero or more distinct Fermat numbers 22k

+ 1 which are prime.

Gauss proved that the condition for constructibility is sufficient and Pierre Laurent
Wantzel proved that the condition is necessary.

The known Fermat primes are:

F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537 ,

and it has been proven that F5, . . . , F32 are not prime.

The equilateral triangle is constructible by F0 = 3, the regular polygon by F1 = 5,
the regular heptadecagon by F2 = 17. The Greeks were also able to construct the
regular pentadecagon which is constructible by F0F1 = 15. By the theorem the regular
polygons with 3 · 17 = 51, 5 · 17 = 85 and 3 · 5 · 17 = 255 sides are constructible.

A regular polygon with F3 = 257 sides was constructed by Magnus Georg Paucker in
1822 and by Friedrich Julius Richelot 1832. In 1894 Johann Gustav Hermes claimed to
have constructed a regular polygon with F4 = 65537 sides.

Conclusion

Until the late eighteenth century mathematical theorems were proved geometrically.
Even Newton who invented the calculus used it as a means of discovery always
proved theorems using geometry. Gauss proved the constructibility of the heptadeca-
gon without giving a geometric construction. In fact, the first constructions were not
published until almost a century later (a modern construction is given in [3]). His alge-
braic solution led to the growing ascendancy of algebra during the nineteenth century
and to the birth of fields of modern mathematics like algebraic geometry and algebraic
topology.
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